
Extended Abstract:
AutoRL Hyperparameter Landscapes

Aditya Mohan∗

Institute of Artificial Intelligence
Leibniz University of Hannover

Hannover, Germany
a.mohan@ai.uni-hannover.de

Carolin Benjamins∗
Institute of Artificial Intelligence
Leibniz University of Hannover

Hannover, Germany
c.benjamins@ai.uni-hannover.de

Konrad Wienecke
Faculty of Electrical Engineering and Computer Science

Leibniz University of Hannover
Hannover, Germany

konrad.wienecke@stud.uni-hannover.de

Alexander Dockhorn
Institute for Information Procedding

Leibniz University of Hannover
Hannover, Germany

dockhorn@tnt.uni-hannover.de

Marius Lindauer
Institute of Artificial Intelligence
Leibniz University of Hannover

Hannover, Germany
m.lindauer@ai.uni-hannover.de

This is an Extended Abstract of a Paper accepted for publication at AutoML-Conf 2023.

1 Motivation

As research in RL soars and the field targets increasingly harder learning-based optimization and
control problems [21, 23, 3, 2, 10, 5], extracting good performance out of ever more complicated
pipelines becomes the need of the hour. Thus, techniques in Automated Reinforcement Learning
(AutoRL; [13]) have started automating RL approach design.

One of the goals of AutoRL is to optimize hyperparameter configurations to help an RL agent achieve
the best performance. However, the distribution shift from the RL agent generating the learning data
through environmental interaction makes it very different from other forms of Machine Learning.
Consequently, RL pipelines can be very sensitive to hyperparameter configurations [8, 13], making it
difficult to find an optimal static configuration at the beginning of the training, and thus, potentially
necessitating adjusting hyperparameters throughout the training process in RL [13].

We develop a novel method to visualize and analyze the performances of different hyperparameter
configurations using landscapes. Landscapes, traditionally a part of the optimization community [14,
12], have previously been the subject of analyses for benign characteristics of hyperparameter
configurations in supervised learning [17]. To the best of our knowledge, we are the first to bring
this to the realm of hyperparameters in RL by building a novel pipeline for creating hyperparameter
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Figure 1: Overview of the data collection process for landscapes with three configurations λ and three phases.
We initialize the process by training a random RL policy πrandom on each configuration λ ∈ λ. The three
configurations run till the first landscape point tls(1), which forms the first landscape dataset Dls(1). The policies
are snapshotted at this point, and the policy for the next phase is selected based on the final performance,
indicated by the continuation of the blue points. The selected configuration is shown with orange circles. This
process is repeated for two more phases to create landscape datasets Dls(1) and Dls(3). The end of the final
phase tls(3) corresponds to the final training point tfinal

landscapes of dynamic configurations at multiple discrete time steps throughout training. Using
the built landscapes, we delineate methods to inspect the landscapes for traits such as their general
structure, configuration stability, and hyperparameter importance. Finally, we provide the first
empirical evidence supporting the need for dynamic hyperparameter configurations for RL by
analyzing the HP landscapes of DQN [21], PPO [19] and SAC [7] on Cartpole, Bipedal Walker and
Hopper [4] environments.

2 Building online Hyperparameter Landscapes for Reinforcement Learning

Figure 1 shows an overview of our pipeline for collecting the data to build the landscape. Our
approach can be broken down into two steps: (i) Data Collection; and (ii) Landscape Modeling and
Analysis.

In the data collection phase, we divide the learning timeframe into different phases 0 < tls(1) <
· · · < tfinal, where t = tls(i) (ls denoting landscape) denotes the time point for collecting landscape
data, and t = tfinal is at the end of training. Each phase entails: (i) using a checkpoint from the last
phase to initialize the different HP configurations and seed combinations that were sampled at the
start of training using a scrambled Sobol sampling strategy [22, 9], (ii) running these combinations
until the end of the phase, and (iii) determining the fitness of each HP configuration by aggregating
the evaluation returns at the end of the phase across the seeds. To determine which configuration
should be used as a checkpoint for the next phase, we train the HP configuration until the final
timestep tfinal and use the final performance as an indicator of fitness. To perform the selection, we
first choose the configuration set with the highest Interquartile Mean (IQM) in the final phase and
initialize this configuration with a seed corresponding to the highest IQM in the selected set. Using
IQMs allows us to mitigate the outlier bias prevalent in mean aggregation while incorporating more
data in our evaluation than median aggregation [1].

Once the data has been collected, we build the landscapes using Interpolating Landscape Models
(ILM), which leverage RBF interpolation with a linear Kernel to construct a continuous surface over
the search space from the given samples and Independent Gaussian Process Regressors (IGPRs),
that use the mean of the Gaussian Processes to model the surfaces independently. Based on our
experiments, IGPRs provide smoother landscapes that show more global patterns. We additionally
use Individual Conditional Expectation (ICE) curves [6] to model one-dimensional slices through the
hyperparameter landscape, thus creating one curve for each hyperparameter connecting the perfor-
mance to its range. Finally, we perform a modality analysis using the folding test of unimodality [20],
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(c) Phase 3

Figure 2: IGPR plots of the mean surfaces for learning rate and discount factor for DQN.

where we look at the return distributions to find a pivot point around which the distribution can be
folded to reduce the variance. Multi-modal return distributions result in a high variance reduction,
while uni-modal ones do not. We use this test to classify the returns into percentages of uni-modality
and multi-modality and, therefore, provide a comment on the stability of the return distribution. Our
code can be found here https://github.com/automl/AutoRL-Landscape.

3 Visualizing Landscapes for Inspection

Figure 2, Figure 3, and Figure 4 show the IGPR hyperparameter landscapes of the three agents in
our experiments. The local minima are represented by the inverted triangle, and the maxima, by the
normal triangle. A star represents the configuration selected for the next stage.

As can be seen, the landscapes strongly vary in their structure over the phases and confirm that
the effect of hyperparameters and their optimal settings vary throughout training. In this sense, the
results promote the use of dynamic configurations, setting a precedent for research on other RL
contexts. A deeper look at the plots shows that the performance peaks move strongly for different
hyperparameters, indicative of the environment complexity and optimization procedure.

The performance peak for DQN occurs in a narrow region for both learning rate α and discount
factor γ, with γ largely influencing the scores on its own in the final phase. On the other hand, we
see a more stable region of peak performance for SAC, potentially indicating better exploration
capability of SAC for similar HP ranges. Hence, it requires fewer variations in hyperparameter
schedules, corroborating the advantage of soft updates and entropy-based exploration inherent in
SAC. Consequently, potential HP schedules for α and γ would have a greater impact on the learning
of TD-based off-policy algorithms such as DQN, something that could be potentially attributed to the
learning dynamics of TD-algorithms themselves [11].

For PPO, we see that there is one region with a high performance whose location also changes over
the phases. This implies that PPO is less robust to HP decisions in general.

Table 1 presents the overall sizes of the three categories (unimodal, multimodal, and uncategorized).
We regard configurations that produce unimodal return distributions as more stable than those that
produce multimodal ones. Generally, more return distributions are categorized as multimodal rather
than unimodal. This is especially true for the last phase, where we find 49.22% of configurations
to be multimodal for DQN, 60.94% configurations for SAC, and 80.47% for PPO. Although some
configurations in this area are classified as unimodal, their return distributions are otherwise not
optimal, with their IQMs being dominated by other configurations not classified as unimodal. We
additionally see that the configurations with unimodal return distributions are almost double for DQN
compared to SAC and PPO, which correlates with the more complicated optimization problem of
Hopper and BipedalWalker compared to CartPole. While further analyses are necessary to ablate the
various factors that impact modality, these observations contradict previous observations on benign
landscapes of static algorithm configuration and AutoML [15, 17, 18].
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(d) Phase 4

Figure 3: IGPR plots for learning rate and discount factor for SAC across phases
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Figure 4: IGPR plots of the mean surfaces for learning rate and discount factor for PPO

Category DQN SAC PPO
Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3

% Unimodal 19.53 13.28 15.62 19.53 09.37 06.25 07.81 12.5 10.94 8.59
% Multimodal 40.63 60.94 60.16 49.22 53.90 57.81 60.94 67.18 60.16 80.47

% Uncategorized 39.84 22.66 22.66 28.90 30.47 24.22 27.34 20.31 28.90 10.94

Table 1: Percentages of configurations assigned to each class from the modality analysis.

4 Concluding Remarks

Our multiphase pipeline for data collection, landscape modeling, and landscape analysis presents a
novel way to analyze hyperparameter performances for RL agents across different training points.
Through our experiments, we found drastic changes in the hyperparameter landscape over time
for three very different RL algorithms on three diverse environments, suggesting that the use of
dynamic configurations in RL may be well-motivated. We additionally showed that the stability
of configurations is rather unpredictable depending on a context informed jointly by the learning
dynamics of the algorithm and the exploration problem. Finally, our modality analysis showed that
only a small fraction of hyperparameter configurations with their associated return distributions
eventually are unimodal, in contrast to the recent observations of benign landscapes in AutoML and
algorithm configuration [16, 17, 18]. This shows that the dynamic configuration of RL agents poses a
much harder problem than classical static AutoML addresses so far and calls for new and specialized
AutoRL methods. Consequently, our analysis opens up new doors for building more specialized
optimizers for RL agents and further research into the interplay between fundamental properties of
RL agents, such as exploration, credit assignment, and hyperparameter configurations.
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